Properties

Label 2.2e3_3e2_17.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3^{2} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1224= 2^{3} \cdot 3^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 11 x^{6} - 36 x^{5} + 50 x^{4} + 24 x^{3} - 40 x^{2} + 64 x + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_17.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 43 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 25\cdot 43 + 29\cdot 43^{2} + 21\cdot 43^{3} + 33\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 29\cdot 43 + 17\cdot 43^{2} + 10\cdot 43^{3} + 14\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 + 42\cdot 43 + 34\cdot 43^{2} + 29\cdot 43^{3} + 34\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 40\cdot 43 + 27\cdot 43^{2} + 27\cdot 43^{3} + 3\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 + 20\cdot 43 + 36\cdot 43^{2} + 6\cdot 43^{3} + 14\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 + 26\cdot 43 + 4\cdot 43^{2} + 26\cdot 43^{3} + 26\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 40 + 40\cdot 43 + 16\cdot 43^{2} + 25\cdot 43^{3} + 41\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 41 + 31\cdot 43 + 3\cdot 43^{2} + 24\cdot 43^{3} + 3\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,4)(3,8,7,5)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,4)(3,7)(5,8)$$-2$
$2$$2$$(1,3)(2,5)(4,8)(6,7)$$0$
$2$$2$$(1,5)(2,7)(3,4)(6,8)$$0$
$2$$4$$(1,2,6,4)(3,8,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.