Properties

Label 2.2e3_3e2_17.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3^{2} \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1224= 2^{3} \cdot 3^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 19 x^{6} + 26 x^{5} + 91 x^{4} - 108 x^{3} - 114 x^{2} + 144 x - 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 50\cdot 137 + 129\cdot 137^{2} + 107\cdot 137^{3} + 38\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 84\cdot 137 + 137^{2} + 72\cdot 137^{3} + 82\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 37 + 69\cdot 137 + 60\cdot 137^{3} + 20\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 + 84\cdot 137 + 11\cdot 137^{2} + 134\cdot 137^{3} + 95\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 77 + 70\cdot 137 + 5\cdot 137^{2} + 34\cdot 137^{3} + 132\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 115 + 88\cdot 137 + 109\cdot 137^{2} + 85\cdot 137^{3} + 97\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 120 + 49\cdot 137 + 119\cdot 137^{2} + 45\cdot 137^{3} + 25\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 136 + 50\cdot 137 + 33\cdot 137^{2} + 8\cdot 137^{3} + 55\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,8)(2,5,7,6)$
$(1,2)(3,6)(4,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,7)(3,8)(5,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,7)(5,8)$ $0$
$2$ $2$ $(1,5)(2,3)(4,6)(7,8)$ $0$
$2$ $4$ $(1,3,4,8)(2,5,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.