Properties

Label 2.2e3_3e2_17.4t3.4c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 3^{2} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1224= 2^{3} \cdot 3^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 7 x^{2} + 2 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 135\cdot 137 + 34\cdot 137^{2} + 80\cdot 137^{3} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 + 36\cdot 137 + 121\cdot 137^{2} + 82\cdot 137^{3} + 56\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 20 + 119\cdot 137 + 119\cdot 137^{2} + 105\cdot 137^{3} + 45\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 88 + 120\cdot 137 + 134\cdot 137^{2} + 4\cdot 137^{3} + 34\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.