Properties

Label 2.2e3_3e2_17.4t3.2c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 3^{2} \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$1224= 2^{3} \cdot 3^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 7 x^{2} + 10 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 68 + 124\cdot 137 + 135\cdot 137^{2} + 68\cdot 137^{3} + 129\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 93 + 9\cdot 137 + 132\cdot 137^{2} + 110\cdot 137^{3} + 128\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 121 + 35\cdot 137 + 67\cdot 137^{2} + 135\cdot 137^{3} + 95\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 130 + 103\cdot 137 + 75\cdot 137^{2} + 95\cdot 137^{3} + 56\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)$$-2$
$2$$2$$(1,3)(2,4)$$0$
$2$$2$$(1,2)$$0$
$2$$4$$(1,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.