Properties

Label 2.2e3_3e2_17.24t22.3
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{3} \cdot 3^{2} \cdot 17 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1224= 2^{3} \cdot 3^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{6} - 8 x^{5} + 4 x^{4} - 8 x^{3} + 4 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 49 + \left(55 a + 3\right)\cdot 59 + \left(38 a + 52\right)\cdot 59^{2} + \left(54 a + 18\right)\cdot 59^{3} + \left(44 a + 18\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 50 + 22\cdot 59 + 39\cdot 59^{2} + 53\cdot 59^{3} + 31\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 50 a + 21 + \left(a + 20\right)\cdot 59 + \left(14 a + 15\right)\cdot 59^{2} + \left(37 a + 54\right)\cdot 59^{3} + \left(35 a + 8\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 a + 17 + \left(3 a + 32\right)\cdot 59 + \left(20 a + 35\right)\cdot 59^{2} + \left(4 a + 34\right)\cdot 59^{3} + \left(14 a + 8\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 a + 1 + \left(16 a + 16\right)\cdot 59 + \left(13 a + 3\right)\cdot 59^{2} + \left(22 a + 30\right)\cdot 59^{3} + \left(54 a + 41\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 12 + \left(57 a + 31\right)\cdot 59 + \left(44 a + 27\right)\cdot 59^{2} + \left(21 a + 18\right)\cdot 59^{3} + \left(23 a + 7\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 13 + 33\cdot 59 + 3\cdot 59^{2} + 46\cdot 59^{3} + 45\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 44 a + 16 + \left(42 a + 17\right)\cdot 59 + 45 a\cdot 59^{2} + \left(36 a + 39\right)\cdot 59^{3} + \left(4 a + 14\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3)(6,8,7)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,8)(2,6)(3,7)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$12$ $2$ $(1,8)(2,6)(3,7)$ $0$ $0$
$8$ $3$ $(1,6,5)(3,4,8)$ $-1$ $-1$
$6$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$ $0$
$8$ $6$ $(1,4,6,8,5,3)(2,7)$ $1$ $1$
$6$ $8$ $(1,3,4,2,8,6,5,7)$ $-\zeta_{8}^{3} - \zeta_{8}$ $\zeta_{8}^{3} + \zeta_{8}$
$6$ $8$ $(1,6,4,7,8,3,5,2)$ $\zeta_{8}^{3} + \zeta_{8}$ $-\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.