Properties

Label 2.2e3_3e2_137.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3^{2} \cdot 137 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$9864= 2^{3} \cdot 3^{2} \cdot 137 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 21 x^{6} + 136 x^{5} + 281 x^{4} - 706 x^{3} + 4345 x^{2} + 14796 x + 13426 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_137.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 193 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 41 + 132\cdot 193 + 146\cdot 193^{2} + 104\cdot 193^{3} + 75\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 78 + 161\cdot 193 + 142\cdot 193^{2} + 96\cdot 193^{3} + 6\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 84 + 50\cdot 193 + 121\cdot 193^{2} + 136\cdot 193^{3} + 190\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 95 + 64\cdot 193 + 147\cdot 193^{2} + 7\cdot 193^{3} + 24\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 130 + 109\cdot 193 + 167\cdot 193^{2} + 144\cdot 193^{3} + 164\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 173 + 27\cdot 193 + 142\cdot 193^{2} + 176\cdot 193^{3} + 86\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 182 + 183\cdot 193 + 121\cdot 193^{2} + 56\cdot 193^{3} + 110\cdot 193^{4} +O\left(193^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 184 + 41\cdot 193 + 168\cdot 193^{2} + 47\cdot 193^{3} + 113\cdot 193^{4} +O\left(193^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,6)(3,7)(5,8)$
$(1,2,3,8)(4,5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,8)(4,7)(5,6)$$-2$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(1,6)(2,7)(3,5)(4,8)$$0$
$2$$4$$(1,2,3,8)(4,5,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.