Properties

Label 2.2e3_3_7.6t5.2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{3} \cdot 3 \cdot 7 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$168= 2^{3} \cdot 3 \cdot 7 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 4 x^{7} - x^{6} + 5 x^{5} - 11 x^{4} + 11 x^{3} - 6 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{3} + 2 x + 9 $
Roots:
$r_{ 1 }$ $=$ $ 10 a^{2} + 6 a + 10 + \left(3 a^{2} + 10 a + 4\right)\cdot 11 + \left(7 a^{2} + 6 a + 1\right)\cdot 11^{2} + \left(9 a^{2} + 10 a + 2\right)\cdot 11^{3} + \left(a^{2} + 6 a + 1\right)\cdot 11^{4} + \left(2 a^{2} + 4 a + 8\right)\cdot 11^{5} + \left(10 a^{2} + 6 a + 5\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 3 a^{2} + 4 a + 4 + \left(5 a^{2} + 9 a + 2\right)\cdot 11 + \left(10 a^{2} + 8 a\right)\cdot 11^{2} + \left(8 a + 3\right)\cdot 11^{3} + \left(3 a^{2} + a\right)\cdot 11^{4} + \left(9 a^{2} + 2 a + 8\right)\cdot 11^{5} + \left(6 a^{2} + 3 a + 5\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 2 a + 3 + \left(3 a^{2} + 4 a + 6\right)\cdot 11 + \left(7 a^{2} + 7 a + 2\right)\cdot 11^{2} + \left(6 a + 6\right)\cdot 11^{3} + \left(7 a^{2} + a + 3\right)\cdot 11^{4} + \left(7 a^{2} + 5 a + 9\right)\cdot 11^{5} + \left(3 a^{2} + 8\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 8 a^{2} + 9 a + \left(10 a^{2} + 9 a + 3\right)\cdot 11 + \left(7 a^{2} + 5 a + 2\right)\cdot 11^{2} + \left(6 a^{2} + 8 a + 9\right)\cdot 11^{3} + \left(5 a^{2} + 7 a + 9\right)\cdot 11^{4} + \left(10 a^{2} + a\right)\cdot 11^{5} + \left(a^{2} + 4 a + 2\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 9 a^{2} + 6 a + 1 + \left(7 a^{2} + 4 a + 2\right)\cdot 11 + \left(2 a^{2} + 2 a + 8\right)\cdot 11^{2} + \left(a^{2} + 8 a + 10\right)\cdot 11^{3} + \left(4 a^{2} + 10 a + 8\right)\cdot 11^{4} + \left(9 a^{2} + 8 a\right)\cdot 11^{5} + \left(a^{2} + 8 a + 10\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 7 a + 2 + \left(7 a^{2} + a + 2\right)\cdot 11 + \left(6 a^{2} + 9 a + 4\right)\cdot 11^{2} + \left(5 a^{2} + 2 a\right)\cdot 11^{3} + \left(3 a^{2} + 7 a + 7\right)\cdot 11^{4} + \left(9 a^{2} + 4 a + 6\right)\cdot 11^{5} + \left(9 a^{2} + 1\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 10 a^{2} + 3 a + 7 + \left(6 a^{2} + 4 a + 10\right)\cdot 11 + \left(8 a^{2} + 3 a + 7\right)\cdot 11^{2} + \left(4 a^{2} + a\right)\cdot 11^{3} + \left(2 a^{2} + 7 a + 1\right)\cdot 11^{4} + \left(5 a + 3\right)\cdot 11^{5} + \left(10 a^{2} + 10 a + 6\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 10 a^{2} + a + 6 + \left(8 a^{2} + 8 a + 3\right)\cdot 11 + \left(8 a^{2} + 10 a + 5\right)\cdot 11^{2} + \left(8 a^{2} + 4 a + 2\right)\cdot 11^{3} + \left(3 a^{2} + 9 a + 1\right)\cdot 11^{4} + \left(3 a^{2} + 10 a\right)\cdot 11^{5} + \left(2 a^{2} + 9 a + 7\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$
$r_{ 9 }$ $=$ $ 5 a^{2} + 6 a + 4 + \left(2 a + 9\right)\cdot 11 + 6 a^{2}11^{2} + \left(5 a^{2} + 3 a + 9\right)\cdot 11^{3} + \left(a^{2} + 2 a + 10\right)\cdot 11^{4} + \left(3 a^{2} + 6\right)\cdot 11^{5} + \left(8 a^{2} + 7\right)\cdot 11^{6} +O\left(11^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,3)(4,5)(8,9)$
$(2,3)(4,7)(6,8)$
$(1,4,6)(2,5,8)(3,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,3)(4,5)(8,9)$ $0$ $0$
$1$ $3$ $(1,9,5)(2,6,7)(3,8,4)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,5,9)(2,7,6)(3,4,8)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,4,6)(2,5,8)(3,7,9)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,6,4)(2,8,5)(3,9,7)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,2,3)(4,5,7)(6,8,9)$ $-1$ $-1$
$3$ $6$ $(1,7,9,2,5,6)(3,4,8)$ $0$ $0$
$3$ $6$ $(1,6,5,2,9,7)(3,8,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.