Properties

Label 2.2e3_3_5_67.4t3.8c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 3 \cdot 5 \cdot 67 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$8040= 2^{3} \cdot 3 \cdot 5 \cdot 67 $
Artin number field: Splitting field of $f= x^{4} + 19 x^{2} + 40 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_3_5_67.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 9 + 37 + 15\cdot 37^{2} + 8\cdot 37^{3} + 14\cdot 37^{4} + 22\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 14 + 7\cdot 37 + 28\cdot 37^{2} + 21\cdot 37^{3} + 26\cdot 37^{4} + 34\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 23 + 29\cdot 37 + 8\cdot 37^{2} + 15\cdot 37^{3} + 10\cdot 37^{4} + 2\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 28 + 35\cdot 37 + 21\cdot 37^{2} + 28\cdot 37^{3} + 22\cdot 37^{4} + 14\cdot 37^{5} +O\left(37^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.