Properties

Label 2.2e3_3_5_67.4t3.7
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 3 \cdot 5 \cdot 67 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$8040= 2^{3} \cdot 3 \cdot 5 \cdot 67 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} + 11 x^{2} - 10 x + 15 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 37 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 3\cdot 37 + 25\cdot 37^{2} + 6\cdot 37^{3} + 6\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 4\cdot 37 + 3\cdot 37^{2} + 15\cdot 37^{3} + 20\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 32\cdot 37 + 33\cdot 37^{2} + 21\cdot 37^{3} + 16\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 35 + 33\cdot 37 + 11\cdot 37^{2} + 30\cdot 37^{3} + 30\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.