Properties

Label 2.2e3_3_5_17.4t3.8c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 3 \cdot 5 \cdot 17 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$2040= 2^{3} \cdot 3 \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{4} + x^{2} + 34 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_3_5_17.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 13 + 15\cdot 47 + 26\cdot 47^{2} + 43\cdot 47^{3} + 24\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 43\cdot 47 + 33\cdot 47^{2} + 25\cdot 47^{3} + 44\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 + 3\cdot 47 + 13\cdot 47^{2} + 21\cdot 47^{3} + 2\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 + 31\cdot 47 + 20\cdot 47^{2} + 3\cdot 47^{3} + 22\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,4)$$0$
$2$$4$$(1,3,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.