Properties

Label 2.2e3_3_5_17.4t3.10
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3 \cdot 5 \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2040= 2^{3} \cdot 3 \cdot 5 \cdot 17 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 17 x^{6} - 110 x^{5} + 674 x^{4} - 758 x^{3} + 1237 x^{2} - 282 x + 519 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 25 + 13\cdot 61 + 12\cdot 61^{2} + 45\cdot 61^{3} + 46\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 33 + 3\cdot 61 + 58\cdot 61^{2} + 7\cdot 61^{3} + 35\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 + 49\cdot 61 + 4\cdot 61^{2} + 52\cdot 61^{3} + 48\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 + 33\cdot 61 + 27\cdot 61^{2} + 14\cdot 61^{3} + 44\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 49 + 17\cdot 61 + 2\cdot 61^{2} + 3\cdot 61^{3} + 53\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 52 + 39\cdot 61 + 50\cdot 61^{2} + 14\cdot 61^{3} + 37\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 58 + 50\cdot 61 + 56\cdot 61^{2} + 58\cdot 61^{3} + 45\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 59 + 34\cdot 61 + 31\cdot 61^{2} + 47\cdot 61^{3} + 54\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,6)(4,7)(5,8)$
$(1,4)(2,7)(3,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,3)(4,8)(5,7)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,4)(2,7)(3,5)(6,8)$ $0$
$2$ $4$ $(1,7,6,5)(2,4,3,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.