Properties

Label 2.2e3_3_5_13.4t3.9
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3 \cdot 5 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1560= 2^{3} \cdot 3 \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 11 x^{6} + 64 x^{5} + 353 x^{4} + 358 x^{3} + 649 x^{2} + 444 x + 426 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 44\cdot 89 + 66\cdot 89^{2} + 63\cdot 89^{3} + 79\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 32\cdot 89 + 66\cdot 89^{2} + 80\cdot 89^{3} + 23\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 41\cdot 89 + 29\cdot 89^{2} + 80\cdot 89^{3} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 42\cdot 89 + 19\cdot 89^{2} + 25\cdot 89^{3} + 49\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 + 39\cdot 89 + 45\cdot 89^{2} + 6\cdot 89^{3} + 28\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 45 + 62\cdot 89 + 62\cdot 89^{2} + 80\cdot 89^{3} + 14\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 54 + 14\cdot 89 + 70\cdot 89^{2} + 13\cdot 89^{3} + 2\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 80 + 79\cdot 89 + 84\cdot 89^{2} + 4\cdot 89^{3} + 68\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,5)(6,8)$
$(1,3)(2,5)(4,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,8)(2,6)(3,4)(5,7)$ $-2$
$2$ $2$ $(1,2)(3,7)(4,5)(6,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,8)(6,7)$ $0$
$2$ $4$ $(1,5,8,7)(2,3,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.