Properties

Label 2.2e3_3_5_13.4t3.12c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3 \cdot 5 \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1560= 2^{3} \cdot 3 \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 2 x^{6} - 52 x^{5} + 203 x^{4} - 124 x^{3} + 2254 x^{2} + 600 x + 3585 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_3_5_13.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 44\cdot 83 + 21\cdot 83^{2} + 79\cdot 83^{3} + 30\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 69\cdot 83 + 50\cdot 83^{2} + 37\cdot 83^{3} + 5\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 + 22\cdot 83 + 13\cdot 83^{2} + 30\cdot 83^{3} + 37\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 42 + 71\cdot 83 + 76\cdot 83^{2} + 51\cdot 83^{3} + 53\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 43 + 47\cdot 83 + 42\cdot 83^{2} + 71\cdot 83^{3} + 11\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 46 + 42\cdot 83 + 8\cdot 83^{2} + 31\cdot 83^{3} + 82\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 71 + 31\cdot 83 + 10\cdot 83^{2} + 67\cdot 83^{3} + 40\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 75 + 2\cdot 83 + 25\cdot 83^{2} + 46\cdot 83^{3} + 69\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,5,8)(2,7,3,6)$
$(1,2)(3,5)(4,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,5)(2,3)(4,8)(6,7)$$-2$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(1,7)(2,4)(3,8)(5,6)$$0$
$2$$4$$(1,4,5,8)(2,7,3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.