Properties

Label 2.2e3_3_5_13.4t3.11
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3 \cdot 5 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1560= 2^{3} \cdot 3 \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 39 x^{6} - 86 x^{5} + 389 x^{4} - 892 x^{3} + 1756 x^{2} - 2640 x + 1660 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 83 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 61\cdot 83 + 60\cdot 83^{2} + 33\cdot 83^{3} + 42\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 74\cdot 83 + 64\cdot 83^{2} + 12\cdot 83^{3} + 25\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 2\cdot 83 + 66\cdot 83^{2} + 39\cdot 83^{3} + 77\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 35\cdot 83 + 7\cdot 83^{2} + 31\cdot 83^{3} + 3\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 + 45\cdot 83 + 8\cdot 83^{2} + 14\cdot 83^{3} + 3\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 38 + 57\cdot 83 + 30\cdot 83^{2} + 78\cdot 83^{3} + 42\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 65 + 28\cdot 83 + 57\cdot 83^{2} + 79\cdot 83^{3} + 20\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 67 + 27\cdot 83 + 36\cdot 83^{2} + 42\cdot 83^{3} + 33\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,6)(5,8)$
$(1,4)(2,5)(3,8)(6,7)$
$(1,3)(2,7)(4,8)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,7)(4,8)(5,6)$ $-2$
$2$ $2$ $(1,2)(3,7)(4,6)(5,8)$ $0$
$2$ $2$ $(1,4)(2,5)(3,8)(6,7)$ $0$
$2$ $4$ $(1,5,3,6)(2,4,7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.