Properties

Label 2.2e3_3_5_13.4t3.10
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3 \cdot 5 \cdot 13 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$1560= 2^{3} \cdot 3 \cdot 5 \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 5 x^{6} - 84 x^{5} + 554 x^{4} - 1800 x^{3} + 3320 x^{2} - 3200 x + 1600 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 5 + 24\cdot 41 + 41^{2} + 10\cdot 41^{3} + 34\cdot 41^{4} + 8\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 29\cdot 41 + 21\cdot 41^{2} + 33\cdot 41^{3} + 41^{4} + 22\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 11 + 35\cdot 41^{2} + 4\cdot 41^{3} + 32\cdot 41^{4} + 10\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 12 + 2\cdot 41 + 17\cdot 41^{2} + 23\cdot 41^{3} + 3\cdot 41^{4} + 5\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 18 + 10\cdot 41 + 14\cdot 41^{2} + 13\cdot 41^{3} + 40\cdot 41^{4} + 7\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 20 + 28\cdot 41 + 23\cdot 41^{2} + 33\cdot 41^{3} + 13\cdot 41^{4} + 40\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 22 + 34\cdot 41 + 37\cdot 41^{3} + 7\cdot 41^{4} + 33\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 31 + 34\cdot 41 + 8\cdot 41^{2} + 8\cdot 41^{3} + 30\cdot 41^{4} + 35\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,5)(3,8)(6,7)$
$(1,2,6,3)(4,8,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,3)(4,7)(5,8)$ $-2$
$2$ $2$ $(1,4)(2,5)(3,8)(6,7)$ $0$
$2$ $2$ $(1,5)(2,7)(3,4)(6,8)$ $0$
$2$ $4$ $(1,2,6,3)(4,8,7,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.