Properties

Label 2.2e3_3_5.8t11.3
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{3} \cdot 3 \cdot 5 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$120= 2^{3} \cdot 3 \cdot 5 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - x^{6} - 5 x^{4} - x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 13\cdot 79 + 27\cdot 79^{2} + 58\cdot 79^{3} + 50\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 + 18\cdot 79^{2} + 44\cdot 79^{3} + 65\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 + 53\cdot 79 + 59\cdot 79^{2} + 19\cdot 79^{3} + 34\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 36\cdot 79 + 64\cdot 79^{2} + 4\cdot 79^{3} + 61\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 30 + 55\cdot 79 + 6\cdot 79^{2} + 75\cdot 79^{3} + 11\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 34 + 56\cdot 79 + 36\cdot 79^{2} + 47\cdot 79^{3} + 2\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 57 + 65\cdot 79 + 72\cdot 79^{2} + 23\cdot 79^{3} + 7\cdot 79^{4} +O\left(79^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 61 + 35\cdot 79 + 30\cdot 79^{2} + 42\cdot 79^{3} + 3\cdot 79^{4} +O\left(79^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,6)(7,8)$
$(1,7,3,8)(2,5,6,4)$
$(1,2)(3,6)(4,8)(5,7)$
$(1,3)(2,6)(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,3)(2,6)(4,5)(7,8)$ $-2$ $-2$
$2$ $2$ $(1,2)(3,6)(4,8)(5,7)$ $0$ $0$
$2$ $2$ $(2,6)(7,8)$ $0$ $0$
$2$ $2$ $(1,7)(2,4)(3,8)(5,6)$ $0$ $0$
$1$ $4$ $(1,5,3,4)(2,7,6,8)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,4,3,5)(2,8,6,7)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,7,3,8)(2,5,6,4)$ $0$ $0$
$2$ $4$ $(1,6,3,2)(4,7,5,8)$ $0$ $0$
$2$ $4$ $(1,5,3,4)(2,8,6,7)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.