Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 79 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 19\cdot 79 + 44\cdot 79^{2} + 40\cdot 79^{3} + 47\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 17 + 74\cdot 79 + 66\cdot 79^{2} + 61\cdot 79^{3} + 63\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 19 + 78\cdot 79 + 12\cdot 79^{2} + 15\cdot 79^{3} + 56\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 32 + 66\cdot 79 + 21\cdot 79^{2} + 70\cdot 79^{3} + 68\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 33 + 44\cdot 79 + 78\cdot 79^{2} + 65\cdot 79^{3} + 37\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 38 + 72\cdot 79 + 68\cdot 79^{2} + 13\cdot 79^{3} + 12\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 40 + 45\cdot 79 + 63\cdot 79^{2} + 67\cdot 79^{3} + 17\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 54 + 73\cdot 79 + 37\cdot 79^{2} + 59\cdot 79^{3} + 11\cdot 79^{4} +O\left(79^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6)(2,8)(3,7)(4,5)$ |
| $(3,7)(4,5)$ |
| $(1,4,6,5)(2,7,8,3)$ |
| $(1,3,6,7)(2,4,8,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,6)(2,8)(3,7)(4,5)$ | $-2$ |
| $2$ | $2$ | $(3,7)(4,5)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,7)(3,8)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,3)(2,4)(5,8)(6,7)$ | $0$ |
| $1$ | $4$ | $(1,8,6,2)(3,5,7,4)$ | $2 \zeta_{4}$ |
| $1$ | $4$ | $(1,2,6,8)(3,4,7,5)$ | $-2 \zeta_{4}$ |
| $2$ | $4$ | $(1,4,6,5)(2,7,8,3)$ | $0$ |
| $2$ | $4$ | $(1,3,6,7)(2,4,8,5)$ | $0$ |
| $2$ | $4$ | $(1,8,6,2)(3,4,7,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.