Properties

Label 2.2e3_3_37.6t3.4
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 3 \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$888= 2^{3} \cdot 3 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - 2 x^{3} + 7 x^{2} + 12 x + 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 + 6\cdot 29^{2} + 2\cdot 29^{3} + 24\cdot 29^{4} + 16\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 20 + \left(3 a + 26\right)\cdot 29 + \left(16 a + 1\right)\cdot 29^{2} + \left(23 a + 6\right)\cdot 29^{3} + \left(12 a + 11\right)\cdot 29^{4} + \left(27 a + 16\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 14 + 25\cdot 29 + 27\cdot 29^{2} + 21\cdot 29^{3} + 29^{4} + 28\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 3 + \left(22 a + 20\right)\cdot 29 + \left(3 a + 16\right)\cdot 29^{2} + \left(10 a + 23\right)\cdot 29^{3} + \left(5 a + 19\right)\cdot 29^{4} + \left(25 a + 12\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 16 a + 27 + \left(25 a + 1\right)\cdot 29 + \left(12 a + 21\right)\cdot 29^{2} + \left(5 a + 20\right)\cdot 29^{3} + \left(16 a + 22\right)\cdot 29^{4} + \left(a + 24\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 13 + \left(6 a + 12\right)\cdot 29 + \left(25 a + 13\right)\cdot 29^{2} + \left(18 a + 12\right)\cdot 29^{3} + \left(23 a + 7\right)\cdot 29^{4} + \left(3 a + 17\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,5)(3,6,4)$
$(1,3)(2,6)(4,5)$
$(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-2$
$3$ $2$ $(2,5)(4,6)$ $0$
$3$ $2$ $(1,3)(2,4)(5,6)$ $0$
$2$ $3$ $(1,2,5)(3,6,4)$ $-1$
$2$ $6$ $(1,6,5,3,2,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.