Properties

Label 2.2e3_3_37.6t3.3
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 3 \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$888= 2^{3} \cdot 3 \cdot 37 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} - 3 x^{3} + 10 x^{2} - 9 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 6 + 18\cdot 41 + 12\cdot 41^{2} + 15\cdot 41^{3} + 26\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 + 22\cdot 41 + 28\cdot 41^{2} + 25\cdot 41^{3} + 14\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 37 + \left(36 a + 33\right)\cdot 41 + \left(a + 27\right)\cdot 41^{2} + \left(38 a + 20\right)\cdot 41^{3} + \left(2 a + 29\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 2 + \left(36 a + 23\right)\cdot 41 + \left(a + 2\right)\cdot 41^{2} + \left(38 a + 31\right)\cdot 41^{3} + \left(2 a + 40\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 a + 5 + \left(4 a + 7\right)\cdot 41 + \left(39 a + 13\right)\cdot 41^{2} + \left(2 a + 20\right)\cdot 41^{3} + \left(38 a + 11\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 a + 40 + \left(4 a + 17\right)\cdot 41 + \left(39 a + 38\right)\cdot 41^{2} + \left(2 a + 9\right)\cdot 41^{3} + 38 a\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(3,6)(4,5)$
$(1,3,4,2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-2$
$3$ $2$ $(3,6)(4,5)$ $0$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$2$ $3$ $(1,4,5)(2,6,3)$ $-1$
$2$ $6$ $(1,3,4,2,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.