Properties

Label 2.2e3_3_29.8t11.2
Dimension 2
Group $Q_8:C_2$
Conductor $ 2^{3} \cdot 3 \cdot 29 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:$696= 2^{3} \cdot 3 \cdot 29 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 5 x^{6} + 20 x^{5} - 15 x^{4} - 32 x^{3} + 85 x^{2} - 82 x + 31 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $Q_8:C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 103 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 21 + 58\cdot 103 + 4\cdot 103^{2} + 68\cdot 103^{3} + 35\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 + 66\cdot 103 + 34\cdot 103^{2} + 18\cdot 103^{3} + 84\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 35 + 59\cdot 103 + 71\cdot 103^{2} + 32\cdot 103^{3} + 88\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 60 + 83\cdot 103 + 54\cdot 103^{2} + 56\cdot 103^{3} + 53\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 85 + 99\cdot 103 + 44\cdot 103^{2} + 98\cdot 103^{3} + 82\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 91 + 99\cdot 103 + 86\cdot 103^{2} + 79\cdot 103^{3} + 3\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 97 + 6\cdot 103 + 99\cdot 103^{2} + 66\cdot 103^{3} + 2\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 101 + 40\cdot 103 + 15\cdot 103^{2} + 94\cdot 103^{3} + 60\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5)(3,4)$
$(1,7,8,6)(2,4,5,3)$
$(1,8)(2,5)(3,4)(6,7)$
$(1,4)(2,6)(3,8)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,5)(3,4)(6,7)$ $-2$ $-2$
$2$ $2$ $(1,4)(2,6)(3,8)(5,7)$ $0$ $0$
$2$ $2$ $(2,5)(3,4)$ $0$ $0$
$2$ $2$ $(1,5)(2,8)(3,7)(4,6)$ $0$ $0$
$1$ $4$ $(1,7,8,6)(2,4,5,3)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,6,8,7)(2,3,5,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,3,8,4)(2,6,5,7)$ $0$ $0$
$2$ $4$ $(1,5,8,2)(3,6,4,7)$ $0$ $0$
$2$ $4$ $(1,7,8,6)(2,3,5,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.