Properties

Label 2.2e3_3_23e2.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3 \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$12696= 2^{3} \cdot 3 \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{8} - 40 x^{6} + 462 x^{4} + 2072 x^{2} + 961 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 29\cdot 59 + 40\cdot 59^{2} + 15\cdot 59^{3} + 54\cdot 59^{4} + 37\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 15 + 42\cdot 59 + 50\cdot 59^{2} + 25\cdot 59^{3} + 16\cdot 59^{4} + 6\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 16 + 33\cdot 59 + 16\cdot 59^{2} + 16\cdot 59^{3} + 18\cdot 59^{4} + 5\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 26 + 13\cdot 59 + 10\cdot 59^{2} + 59^{3} + 29\cdot 59^{4} + 9\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 33 + 45\cdot 59 + 48\cdot 59^{2} + 57\cdot 59^{3} + 29\cdot 59^{4} + 49\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 43 + 25\cdot 59 + 42\cdot 59^{2} + 42\cdot 59^{3} + 40\cdot 59^{4} + 53\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 44 + 16\cdot 59 + 8\cdot 59^{2} + 33\cdot 59^{3} + 42\cdot 59^{4} + 52\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 57 + 29\cdot 59 + 18\cdot 59^{2} + 43\cdot 59^{3} + 4\cdot 59^{4} + 21\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,6)(3,8,4,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,8)(2,7)(3,5)(4,6)$$0$
$2$$4$$(1,5,2,6)(3,8,4,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.