Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 59 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 29\cdot 59 + 40\cdot 59^{2} + 15\cdot 59^{3} + 54\cdot 59^{4} + 37\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 15 + 42\cdot 59 + 50\cdot 59^{2} + 25\cdot 59^{3} + 16\cdot 59^{4} + 6\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 16 + 33\cdot 59 + 16\cdot 59^{2} + 16\cdot 59^{3} + 18\cdot 59^{4} + 5\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 26 + 13\cdot 59 + 10\cdot 59^{2} + 59^{3} + 29\cdot 59^{4} + 9\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 33 + 45\cdot 59 + 48\cdot 59^{2} + 57\cdot 59^{3} + 29\cdot 59^{4} + 49\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 43 + 25\cdot 59 + 42\cdot 59^{2} + 42\cdot 59^{3} + 40\cdot 59^{4} + 53\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 44 + 16\cdot 59 + 8\cdot 59^{2} + 33\cdot 59^{3} + 42\cdot 59^{4} + 52\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 57 + 29\cdot 59 + 18\cdot 59^{2} + 43\cdot 59^{3} + 4\cdot 59^{4} + 21\cdot 59^{5} +O\left(59^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5,2,6)(3,8,4,7)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $-2$ |
| $2$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,8)(2,7)(3,5)(4,6)$ | $0$ |
| $2$ | $4$ | $(1,5,2,6)(3,8,4,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.