Properties

Label 2.2e3_3_23e2.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3 \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$12696= 2^{3} \cdot 3 \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} - 10 x^{6} + 44 x^{5} + 49 x^{4} - 176 x^{3} + 668 x^{2} - 572 x + 463 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 39\cdot 101 + 10\cdot 101^{2} + 76\cdot 101^{3} + 19\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 73\cdot 101 + 49\cdot 101^{2} + 95\cdot 101^{3} + 44\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 + 75\cdot 101 + 86\cdot 101^{2} + 2\cdot 101^{3} + 9\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 + 8\cdot 101 + 25\cdot 101^{2} + 22\cdot 101^{3} + 34\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 68 + 92\cdot 101 + 75\cdot 101^{2} + 78\cdot 101^{3} + 66\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 74 + 25\cdot 101 + 14\cdot 101^{2} + 98\cdot 101^{3} + 91\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 82 + 27\cdot 101 + 51\cdot 101^{2} + 5\cdot 101^{3} + 56\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 88 + 61\cdot 101 + 90\cdot 101^{2} + 24\cdot 101^{3} + 81\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,5)(3,4,8,7)$
$(1,3)(2,7)(4,5)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,3)(2,7)(4,5)(6,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$2$ $4$ $(1,2,6,5)(3,4,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.