Properties

Label 2.2e3_3_11.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3 \cdot 11 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$264= 2^{3} \cdot 3 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} - 8 x^{5} + 42 x^{4} + 32 x^{3} + 16 x^{2} + 128 x + 256 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 2 + 9\cdot 41 + 10\cdot 41^{2} + 11\cdot 41^{3} + 17\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 6\cdot 41 + 8\cdot 41^{2} + 3\cdot 41^{3} + 14\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 + 20\cdot 41 + 36\cdot 41^{2} + 18\cdot 41^{3} + 33\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 + 5\cdot 41 + 27\cdot 41^{2} + 7\cdot 41^{3} + 17\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 + 5\cdot 41 + 6\cdot 41^{2} + 29\cdot 41^{3} + 12\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 + 9\cdot 41 + 12\cdot 41^{2} + 26\cdot 41^{3} + 18\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 34 + 16\cdot 41 + 32\cdot 41^{2} + 36\cdot 41^{3} + 28\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 39 + 8\cdot 41 + 31\cdot 41^{2} + 30\cdot 41^{3} + 21\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,8)(5,6)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $-2$
$2$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,4,6,7)(2,3,5,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.