Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 9 + 14\cdot 67 + 50\cdot 67^{2} + 27\cdot 67^{3} + 48\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 12 + 23\cdot 67 + 53\cdot 67^{2} + 22\cdot 67^{3} + 40\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 17 + 65\cdot 67 + 33\cdot 67^{2} + 7\cdot 67^{3} + 38\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 25 + 51\cdot 67 + 56\cdot 67^{2} + 50\cdot 67^{3} + 11\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 43 + 15\cdot 67 + 10\cdot 67^{2} + 16\cdot 67^{3} + 55\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 51 + 67 + 33\cdot 67^{2} + 59\cdot 67^{3} + 28\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 56 + 43\cdot 67 + 13\cdot 67^{2} + 44\cdot 67^{3} + 26\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 59 + 52\cdot 67 + 16\cdot 67^{2} + 39\cdot 67^{3} + 18\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,2,8,7)(3,5,6,4)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-2$ |
| $2$ | $2$ | $(1,3)(2,4)(5,7)(6,8)$ | $0$ |
| $2$ | $2$ | $(1,4)(2,6)(3,7)(5,8)$ | $0$ |
| $2$ | $4$ | $(1,2,8,7)(3,5,6,4)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.