Properties

Label 2.2e3_3_11.4t3.5c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 3 \cdot 11 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$264= 2^{3} \cdot 3 \cdot 11 $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 2 x^{6} + 8 x^{5} + 37 x^{4} - 92 x^{3} - 40 x^{2} + 88 x + 187 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_3_11.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 9 + 14\cdot 67 + 50\cdot 67^{2} + 27\cdot 67^{3} + 48\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 + 23\cdot 67 + 53\cdot 67^{2} + 22\cdot 67^{3} + 40\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 65\cdot 67 + 33\cdot 67^{2} + 7\cdot 67^{3} + 38\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 25 + 51\cdot 67 + 56\cdot 67^{2} + 50\cdot 67^{3} + 11\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 43 + 15\cdot 67 + 10\cdot 67^{2} + 16\cdot 67^{3} + 55\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 51 + 67 + 33\cdot 67^{2} + 59\cdot 67^{3} + 28\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 56 + 43\cdot 67 + 13\cdot 67^{2} + 44\cdot 67^{3} + 26\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 59 + 52\cdot 67 + 16\cdot 67^{2} + 39\cdot 67^{3} + 18\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(3,5,6,4)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.