Properties

Label 2.2e3_367.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 367 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2936= 2^{3} \cdot 367 $
Artin number field: Splitting field of $f= x^{8} + 2 x^{6} + 225 x^{4} + 3160 x^{2} + 12544 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_367.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 4 + 26\cdot 31 + 14\cdot 31^{2} + 18\cdot 31^{3} + 10\cdot 31^{4} + 2\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 6 + 9\cdot 31 + 27\cdot 31^{2} + 12\cdot 31^{3} + 16\cdot 31^{4} + 11\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 9 + 29\cdot 31 + 28\cdot 31^{2} + 22\cdot 31^{3} + 29\cdot 31^{4} + 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 12 + 28\cdot 31 + 21\cdot 31^{2} + 7\cdot 31^{3} + 5\cdot 31^{4} + 15\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 19 + 2\cdot 31 + 9\cdot 31^{2} + 23\cdot 31^{3} + 25\cdot 31^{4} + 15\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 22 + 31 + 2\cdot 31^{2} + 8\cdot 31^{3} + 31^{4} + 29\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 25 + 21\cdot 31 + 3\cdot 31^{2} + 18\cdot 31^{3} + 14\cdot 31^{4} + 19\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 27 + 4\cdot 31 + 16\cdot 31^{2} + 12\cdot 31^{3} + 20\cdot 31^{4} + 28\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,3)(5,6,8,7)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-2$
$2$$2$$(1,5)(2,7)(3,6)(4,8)$$0$
$2$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$4$$(1,2,4,3)(5,6,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.