Properties

Label 2.2e3_31e2.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$7688= 2^{3} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 33 x^{6} - 40 x^{5} + 234 x^{4} - 160 x^{3} + 528 x^{2} - 128 x + 256 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 7 + 28\cdot 67 + 27\cdot 67^{2} + 52\cdot 67^{3} + 50\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 + 24\cdot 67 + 53\cdot 67^{2} + 10\cdot 67^{3} + 27\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 + 23\cdot 67 + 32\cdot 67^{2} + 56\cdot 67^{3} + 8\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 30 + 58\cdot 67 + 20\cdot 67^{2} + 14\cdot 67^{3} + 47\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 + 30\cdot 67 + 51\cdot 67^{2} + 39\cdot 67^{3} + 61\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 47 + 21\cdot 67 + 29\cdot 67^{2} + 23\cdot 67^{3} + 16\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 57 + 64\cdot 67 + 18\cdot 67^{2} + 43\cdot 67^{3} + 14\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 58 + 16\cdot 67 + 34\cdot 67^{2} + 27\cdot 67^{3} + 41\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4)(5,6)(7,8)$
$(1,3,7,5)(2,6,8,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,8)(3,5)(4,6)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,6)(2,3)(4,7)(5,8)$$0$
$2$$4$$(1,3,7,5)(2,6,8,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.