Properties

Label 2.2e3_31_47.4t3.8
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 31 \cdot 47 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$11656= 2^{3} \cdot 31 \cdot 47 $
Artin number field: Splitting field of $f= x^{4} + 53 x^{2} + 338 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 7 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 1 + 4\cdot 7^{2} + 4\cdot 7^{3} + 4\cdot 7^{4} + 5\cdot 7^{5} + 4\cdot 7^{6} + 7^{7} + 6\cdot 7^{8} + 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 3 + 2\cdot 7 + 7^{2} + 7^{3} + 4\cdot 7^{4} + 5\cdot 7^{5} + 7^{6} + 6\cdot 7^{7} + 5\cdot 7^{8} + 3\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 4 + 4\cdot 7 + 5\cdot 7^{2} + 5\cdot 7^{3} + 2\cdot 7^{4} + 7^{5} + 5\cdot 7^{6} + 7^{8} + 3\cdot 7^{9} +O\left(7^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 6 + 6\cdot 7 + 2\cdot 7^{2} + 2\cdot 7^{3} + 2\cdot 7^{4} + 7^{5} + 2\cdot 7^{6} + 5\cdot 7^{7} + 5\cdot 7^{9} +O\left(7^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.