Properties

Label 2.2e3_31_47.4t3.10c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 31 \cdot 47 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$11656= 2^{3} \cdot 31 \cdot 47 $
Artin number field: Splitting field of $f= x^{8} + 106 x^{6} - 108 x^{5} + 1407 x^{4} + 104 x^{3} - 1454 x^{2} - 56 x + 392 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even
Determinant: 1.2e3_31_47.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 23 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 4 + 17\cdot 23 + 8\cdot 23^{2} + 22\cdot 23^{3} + 7\cdot 23^{4} + 4\cdot 23^{5} + 19\cdot 23^{6} + 11\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 5 + 12\cdot 23 + 11\cdot 23^{2} + 11\cdot 23^{4} + 14\cdot 23^{5} + 15\cdot 23^{6} + 16\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 7 + 2\cdot 23 + 16\cdot 23^{2} + 19\cdot 23^{3} + 21\cdot 23^{4} + 16\cdot 23^{5} + 3\cdot 23^{6} + 10\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 11 + 21\cdot 23 + 15\cdot 23^{2} + 13\cdot 23^{3} + 7\cdot 23^{4} + 5\cdot 23^{6} + 7\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 13 + 17\cdot 23 + 11\cdot 23^{2} + 13\cdot 23^{3} + 8\cdot 23^{4} + 8\cdot 23^{5} + 8\cdot 23^{6} + 20\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 14 + 12\cdot 23 + 14\cdot 23^{2} + 14\cdot 23^{3} + 11\cdot 23^{4} + 18\cdot 23^{5} + 4\cdot 23^{6} + 2\cdot 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 17 + 17\cdot 23 + 6\cdot 23^{2} + 18\cdot 23^{3} + 18\cdot 23^{4} + 22\cdot 23^{5} + 16\cdot 23^{6} + 23^{7} +O\left(23^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 21 + 13\cdot 23 + 6\cdot 23^{2} + 12\cdot 23^{3} + 4\cdot 23^{4} + 6\cdot 23^{5} + 18\cdot 23^{6} + 21\cdot 23^{7} +O\left(23^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,7)(4,5)(6,8)$
$(1,2)(3,4)(5,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,5)(3,8)(4,7)$$-2$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$4$$(1,7,6,4)(2,3,5,8)$$0$
The blue line marks the conjugacy class containing complex conjugation.