Properties

Label 2.2e3_31.8t6.2c1
Dimension 2
Group $D_{8}$
Conductor $ 2^{3} \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$248= 2^{3} \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 3 x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} + 3 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd
Determinant: 1.2e3_31.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 6 + 36\cdot 71 + 43\cdot 71^{2} + 55\cdot 71^{3} + 68\cdot 71^{4} + 28\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 19 + 58\cdot 71 + 59\cdot 71^{2} + 14\cdot 71^{3} + 26\cdot 71^{4} + 9\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 40 + 34\cdot 71 + 71^{2} + 9\cdot 71^{3} + 30\cdot 71^{4} + 49\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 55 + 43\cdot 71 + 46\cdot 71^{2} + 35\cdot 71^{3} + 11\cdot 71^{4} + 40\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 56 + 45\cdot 71 + 22\cdot 71^{2} + 61\cdot 71^{3} + 61\cdot 71^{4} + 11\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 57 + 34\cdot 71 + 26\cdot 71^{2} + 17\cdot 71^{3} + 30\cdot 71^{4} + 66\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 59 + 12\cdot 71 + 68\cdot 71^{2} + 34\cdot 71^{3} + 65\cdot 71^{4} + 2\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 66 + 17\cdot 71 + 15\cdot 71^{2} + 55\cdot 71^{3} + 60\cdot 71^{4} + 3\cdot 71^{5} +O\left(71^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,6,2,7,3,8,5)$
$(1,7)(2,5)(3,4)(6,8)$
$(1,6,7,8)(2,3,5,4)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,7)(2,5)(3,4)(6,8)$$-2$
$4$$2$$(1,5)(2,7)(3,6)(4,8)$$0$
$4$$2$$(1,8)(3,4)(6,7)$$0$
$2$$4$$(1,6,7,8)(2,3,5,4)$$0$
$2$$8$$(1,5,8,3,7,2,6,4)$$-\zeta_{8}^{3} + \zeta_{8}$
$2$$8$$(1,3,6,5,7,4,8,2)$$\zeta_{8}^{3} - \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.