Properties

Label 2.2e3_31.8t6.1
Dimension 2
Group $D_{8}$
Conductor $ 2^{3} \cdot 31 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:$248= 2^{3} \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 3 x^{6} + 6 x^{5} + 6 x^{4} - 6 x^{3} - 5 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $D_{8}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 10 + 60\cdot 71 + 4\cdot 71^{2} + 25\cdot 71^{3} + 11\cdot 71^{4} + 30\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 + 62\cdot 71 + 51\cdot 71^{2} + 50\cdot 71^{3} + 61\cdot 71^{4} + 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 21 + 7\cdot 71 + 33\cdot 71^{2} + 25\cdot 71^{3} + 19\cdot 71^{4} + 55\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 31 + 63\cdot 71 + 68\cdot 71^{2} + 17\cdot 71^{3} + 29\cdot 71^{4} + 35\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 37 + 18\cdot 71 + 54\cdot 71^{2} + 6\cdot 71^{3} + 51\cdot 71^{4} + 17\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 44 + 23\cdot 71 + 71^{2} + 27\cdot 71^{3} + 46\cdot 71^{4} + 18\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 65 + 70\cdot 71 + 13\cdot 71^{2} + 21\cdot 71^{3} + 50\cdot 71^{4} + 58\cdot 71^{5} +O\left(71^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 67 + 48\cdot 71 + 55\cdot 71^{2} + 38\cdot 71^{3} + 14\cdot 71^{4} + 66\cdot 71^{5} +O\left(71^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(2,6)(3,8)(4,5)$
$(1,4)(3,8)(5,7)$
$(1,5,7,4)(2,3,6,8)$
$(1,2)(3,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,6)(3,8)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,2)(3,4)(5,8)(6,7)$ $0$ $0$
$4$ $2$ $(1,4)(3,8)(5,7)$ $0$ $0$
$2$ $4$ $(1,5,7,4)(2,3,6,8)$ $0$ $0$
$2$ $8$ $(1,2,4,8,7,6,5,3)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,8,5,2,7,3,4,6)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.