Properties

Label 2.2e3_31.4t3.3c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$248= 2^{3} \cdot 31 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} + 8 x^{5} + 22 x^{4} + 32 x^{3} + 16 x^{2} - 128 x + 256 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_31.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 8 + 24\cdot 71 + 60\cdot 71^{2} + 19\cdot 71^{3} + 63\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 32\cdot 71 + 28\cdot 71^{2} + 44\cdot 71^{3} + 41\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 + 16\cdot 71 + 70\cdot 71^{2} + 29\cdot 71^{3} + 66\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 32 + 12\cdot 71 + 69\cdot 71^{2} + 47\cdot 71^{3} + 38\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 + 69\cdot 71 + 53\cdot 71^{2} + 47\cdot 71^{3} + 41\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 56 + 43\cdot 71 + 19\cdot 71^{2} + 16\cdot 71^{3} + 66\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 60 + 57\cdot 71 + 62\cdot 71^{2} + 4\cdot 71^{3} + 17\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 66 + 27\cdot 71 + 61\cdot 71^{2} + 71^{3} + 20\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,6)(4,8)(5,7)$
$(1,2,8,7)(3,5,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,4)(5,6)$$-2$
$2$$2$$(1,3)(2,6)(4,8)(5,7)$$0$
$2$$2$$(1,6)(2,4)(3,7)(5,8)$$0$
$2$$4$$(1,2,8,7)(3,5,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.