Properties

Label 2.2e3_281.4t3.6
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 281 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2248= 2^{3} \cdot 281 $
Artin number field: Splitting field of $f= x^{8} + 26 x^{6} + 41 x^{4} + 584 x^{2} + 4096 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 283 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 45 + 69\cdot 283 + 22\cdot 283^{2} + 2\cdot 283^{3} + 179\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 74 + 269\cdot 283 + 166\cdot 283^{2} + 55\cdot 283^{3} + 150\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 102 + 244\cdot 283 + 196\cdot 283^{2} + 186\cdot 283^{3} + 10\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 131 + 161\cdot 283 + 58\cdot 283^{2} + 240\cdot 283^{3} + 264\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 152 + 121\cdot 283 + 224\cdot 283^{2} + 42\cdot 283^{3} + 18\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 181 + 38\cdot 283 + 86\cdot 283^{2} + 96\cdot 283^{3} + 272\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 209 + 13\cdot 283 + 116\cdot 283^{2} + 227\cdot 283^{3} + 132\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 238 + 213\cdot 283 + 260\cdot 283^{2} + 280\cdot 283^{3} + 103\cdot 283^{4} +O\left(283^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $4$ $(1,4,7,6)(2,3,8,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.