Properties

Label 2.2e3_281.4t3.1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 281 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$2248= 2^{3} \cdot 281 $
Artin number field: Splitting field of $f= x^{4} + 9 x^{2} - 50 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 283 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 25 + 80\cdot 283 + 155\cdot 283^{2} + 69\cdot 283^{3} + 145\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 82 + 255\cdot 283 + 46\cdot 283^{2} + 254\cdot 283^{3} + 259\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 201 + 27\cdot 283 + 236\cdot 283^{2} + 28\cdot 283^{3} + 23\cdot 283^{4} +O\left(283^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 258 + 202\cdot 283 + 127\cdot 283^{2} + 213\cdot 283^{3} + 137\cdot 283^{4} +O\left(283^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.