Properties

Label 2.2e3_2557.7t2.1
Dimension 2
Group $D_{7}$
Conductor $ 2^{3} \cdot 2557 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{7}$
Conductor:$20456= 2^{3} \cdot 2557 $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 9 x^{5} - 21 x^{4} + 554 x^{3} - 938 x^{2} - 608 x - 328 $ over $\Q$
Size of Galois orbit: 3
Smallest containing permutation representation: $D_{7}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 2\cdot 29 + 2\cdot 29^{2} + 23\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 2 + \left(22 a + 16\right)\cdot 29 + \left(a + 18\right)\cdot 29^{2} + \left(23 a + 15\right)\cdot 29^{3} + \left(23 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 25 a + 22 + \left(6 a + 6\right)\cdot 29 + \left(27 a + 5\right)\cdot 29^{2} + \left(5 a + 13\right)\cdot 29^{3} + \left(5 a + 1\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 28 a + 17 + \left(20 a + 3\right)\cdot 29 + \left(13 a + 23\right)\cdot 29^{2} + \left(28 a + 5\right)\cdot 29^{3} + \left(27 a + 8\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 12 + \left(12 a + 27\right)\cdot 29 + \left(9 a + 9\right)\cdot 29^{2} + \left(16 a + 27\right)\cdot 29^{3} + \left(8 a + 6\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 12 + \left(8 a + 22\right)\cdot 29 + \left(15 a + 12\right)\cdot 29^{2} + 18\cdot 29^{3} + \left(a + 3\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 4 a + 21 + \left(16 a + 8\right)\cdot 29 + \left(19 a + 15\right)\cdot 29^{2} + \left(12 a + 12\right)\cdot 29^{3} + \left(20 a + 4\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,6)(2,4)(3,7)$
$(1,3)(2,7)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$ $c2$ $c3$
$1$ $1$ $()$ $2$ $2$ $2$
$7$ $2$ $(1,6)(2,4)(3,7)$ $0$ $0$ $0$
$2$ $7$ $(1,5,6,3,2,4,7)$ $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$ $\zeta_{7}^{4} + \zeta_{7}^{3}$ $\zeta_{7}^{5} + \zeta_{7}^{2}$
$2$ $7$ $(1,6,2,7,5,3,4)$ $\zeta_{7}^{5} + \zeta_{7}^{2}$ $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$ $\zeta_{7}^{4} + \zeta_{7}^{3}$
$2$ $7$ $(1,3,7,6,4,5,2)$ $\zeta_{7}^{4} + \zeta_{7}^{3}$ $\zeta_{7}^{5} + \zeta_{7}^{2}$ $-\zeta_{7}^{5} - \zeta_{7}^{4} - \zeta_{7}^{3} - \zeta_{7}^{2} - 1$
The blue line marks the conjugacy class containing complex conjugation.