Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 3 + 5\cdot 73 + 21\cdot 73^{2} + 32\cdot 73^{3} + 45\cdot 73^{4} + 18\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 26 + 61\cdot 73 + 37\cdot 73^{2} + 5\cdot 73^{3} + 39\cdot 73^{4} + 60\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 47 + 11\cdot 73 + 35\cdot 73^{2} + 67\cdot 73^{3} + 33\cdot 73^{4} + 12\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 70 + 67\cdot 73 + 51\cdot 73^{2} + 40\cdot 73^{3} + 27\cdot 73^{4} + 54\cdot 73^{5} +O\left(73^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $2$ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-2$ |
| $2$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $2$ | $2$ | $(1,4)$ | $0$ |
| $2$ | $4$ | $(1,3,4,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.