Properties

Label 2.2e3_23_71.4t3.12
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 23 \cdot 71 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$13064= 2^{3} \cdot 23 \cdot 71 $
Artin number field: Splitting field of $f= x^{8} + 82 x^{6} + 2065 x^{4} + 2680 x^{2} + 36864 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 73 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 6 + 46\cdot 73 + 37\cdot 73^{2} + 3\cdot 73^{3} + 63\cdot 73^{4} + 28\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 15 + 50\cdot 73 + 32\cdot 73^{2} + 58\cdot 73^{3} + 4\cdot 73^{4} + 69\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 29 + 29\cdot 73 + 54\cdot 73^{2} + 49\cdot 73^{3} + 56\cdot 73^{4} + 70\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 35 + 39\cdot 73 + 23\cdot 73^{2} + 41\cdot 73^{3} + 73^{4} + 35\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 38 + 33\cdot 73 + 49\cdot 73^{2} + 31\cdot 73^{3} + 71\cdot 73^{4} + 37\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 44 + 43\cdot 73 + 18\cdot 73^{2} + 23\cdot 73^{3} + 16\cdot 73^{4} + 2\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 58 + 22\cdot 73 + 40\cdot 73^{2} + 14\cdot 73^{3} + 68\cdot 73^{4} + 3\cdot 73^{5} +O\left(73^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 67 + 26\cdot 73 + 35\cdot 73^{2} + 69\cdot 73^{3} + 9\cdot 73^{4} + 44\cdot 73^{5} +O\left(73^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $-2$
$2$ $2$ $(1,2)(3,6)(4,5)(7,8)$ $0$
$2$ $2$ $(1,3)(2,5)(4,7)(6,8)$ $0$
$2$ $4$ $(1,5,7,6)(2,3,8,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.