Properties

Label 2.2e3_23.4t3.3
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 23 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$184= 2^{3} \cdot 23 $
Artin number field: Splitting field of $f= x^{8} - 6 x^{6} - 4 x^{5} + 43 x^{4} + 104 x^{3} + 86 x^{2} + 24 x + 36 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 47 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 2 + 41\cdot 47 + 31\cdot 47^{2} + 28\cdot 47^{3} + 38\cdot 47^{4} + 43\cdot 47^{5} + 13\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 5 + 16\cdot 47 + 11\cdot 47^{2} + 27\cdot 47^{3} + 4\cdot 47^{4} + 17\cdot 47^{5} + 25\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 6 + 27\cdot 47 + 4\cdot 47^{2} + 32\cdot 47^{3} + 27\cdot 47^{4} + 14\cdot 47^{5} + 12\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 9 + 5\cdot 47 + 45\cdot 47^{2} + 21\cdot 47^{3} + 35\cdot 47^{4} + 13\cdot 47^{5} + 23\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 11 + 31\cdot 47 + 29\cdot 47^{2} + 15\cdot 47^{3} + 27\cdot 47^{5} + 22\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 29 + 5\cdot 47 + 21\cdot 47^{2} + 22\cdot 47^{3} + 3\cdot 47^{4} + 6\cdot 47^{5} + 32\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 34 + 9\cdot 47 + 46\cdot 47^{2} + 5\cdot 47^{3} + 23\cdot 47^{4} + 18\cdot 47^{5} + 42\cdot 47^{6} +O\left(47^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 45 + 4\cdot 47 + 45\cdot 47^{2} + 33\cdot 47^{3} + 7\cdot 47^{4} + 16\cdot 47^{6} +O\left(47^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,7)(4,8)(5,6)$
$(1,4)(2,8)(3,5)(6,7)$
$(1,3)(2,7)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,7)(4,8)(5,6)$ $-2$
$2$ $2$ $(1,3)(2,7)(4,6)(5,8)$ $0$
$2$ $2$ $(1,4)(2,8)(3,5)(6,7)$ $0$
$2$ $4$ $(1,5,2,6)(3,4,7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.