Properties

Label 2.2e3_2113.4t3.3
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 2113 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$16904= 2^{3} \cdot 2113 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 23 x^{2} + 24 x + 126 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 28 + 64\cdot 191 + 85\cdot 191^{2} + 40\cdot 191^{3} + 142\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 40 + 52\cdot 191 + 67\cdot 191^{2} + 57\cdot 191^{3} + 78\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 152 + 138\cdot 191 + 123\cdot 191^{2} + 133\cdot 191^{3} + 112\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 164 + 126\cdot 191 + 105\cdot 191^{2} + 150\cdot 191^{3} + 48\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.