Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 + 179\cdot 191 + 172\cdot 191^{2} + 16\cdot 191^{3} + 127\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 67 + 116\cdot 191 + 152\cdot 191^{2} + 97\cdot 191^{3} + 29\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 124 + 74\cdot 191 + 38\cdot 191^{2} + 93\cdot 191^{3} + 161\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 179 + 11\cdot 191 + 18\cdot 191^{2} + 174\cdot 191^{3} + 63\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2)(3,4)$ |
| $(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,4)(2,3)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $2$ |
$2$ |
$(1,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,3,4,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.