Properties

Label 2.2e3_19e2.6t5.2
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{3} \cdot 19^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$2888= 2^{3} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + x^{7} + 9 x^{6} - 23 x^{5} + 48 x^{4} - 54 x^{3} + 77 x^{2} - 55 x + 37 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 7 a^{2} + 10 a + 12 + \left(6 a^{2} + 11 a + 7\right)\cdot 13 + \left(3 a^{2} + 7 a + 2\right)\cdot 13^{2} + \left(a^{2} + 11 a\right)\cdot 13^{3} + \left(6 a^{2} + 9\right)\cdot 13^{4} + \left(5 a^{2} + 12 a + 7\right)\cdot 13^{5} + \left(5 a^{2} + 11 a + 6\right)\cdot 13^{6} + \left(10 a^{2} + 6 a + 10\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 6 a^{2} + a + 7 + \left(3 a^{2} + 11 a + 9\right)\cdot 13 + 2 a\cdot 13^{2} + \left(6 a^{2} + 12 a + 8\right)\cdot 13^{3} + \left(5 a^{2} + 5 a + 2\right)\cdot 13^{4} + \left(a^{2} + 5 a + 11\right)\cdot 13^{5} + \left(12 a^{2} + 12 a + 2\right)\cdot 13^{6} + \left(12 a^{2} + 11 a + 4\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 7 a^{2} + 11 a + 12 + \left(a^{2} + 8 a + 9\right)\cdot 13 + \left(10 a^{2} + a + 2\right)\cdot 13^{2} + \left(7 a^{2} + 9 a\right)\cdot 13^{3} + \left(11 a^{2} + 10 a + 12\right)\cdot 13^{4} + \left(8 a + 5\right)\cdot 13^{5} + \left(11 a^{2} + 9 a + 5\right)\cdot 13^{6} + \left(a^{2} + 7 a + 3\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{2} + 5 a + 9 + \left(8 a^{2} + 4 a + 11\right)\cdot 13 + \left(4 a^{2} + 11 a + 7\right)\cdot 13^{2} + \left(3 a^{2} + 6 a + 1\right)\cdot 13^{3} + \left(9 a^{2} + 2 a + 3\right)\cdot 13^{4} + \left(8 a^{2} + 7 a + 6\right)\cdot 13^{5} + \left(6 a^{2} + 6 a + 5\right)\cdot 13^{6} + \left(6 a^{2} + 2 a + 3\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 12 a^{2} + 5 a + 10 + \left(4 a^{2} + 5 a + 5\right)\cdot 13 + \left(12 a^{2} + 3 a + 1\right)\cdot 13^{2} + \left(3 a^{2} + 5 a + 8\right)\cdot 13^{3} + \left(8 a^{2} + a + 7\right)\cdot 13^{4} + \left(6 a^{2} + 5 a\right)\cdot 13^{5} + \left(9 a^{2} + 4 a + 12\right)\cdot 13^{6} + \left(11 a + 1\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 8 a^{2} + 2 a + 6 + \left(6 a^{2} + 12 a\right)\cdot 13 + \left(8 a^{2} + 3 a\right)\cdot 13^{2} + \left(2 a^{2} + 11 a + 5\right)\cdot 13^{3} + \left(9 a^{2} + 8 a + 7\right)\cdot 13^{4} + \left(3 a^{2} + 12 a + 12\right)\cdot 13^{5} + \left(12 a^{2} + 3 a + 12\right)\cdot 13^{6} + \left(10 a^{2} + 4\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 9 a^{2} + a + 11 + \left(11 a^{2} + 11\right)\cdot 13 + \left(12 a^{2} + a + 8\right)\cdot 13^{2} + \left(2 a^{2} + 3 a + 12\right)\cdot 13^{3} + \left(8 a^{2} + 6 a + 1\right)\cdot 13^{4} + \left(3 a^{2} + 3 a + 1\right)\cdot 13^{5} + \left(10 a^{2} + 2 a + 9\right)\cdot 13^{6} + \left(12 a^{2} + 10 a + 12\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 11 a^{2} + 6 a + 10 + \left(10 a^{2} + 9 a + 1\right)\cdot 13 + \left(12 a^{2} + 10 a + 10\right)\cdot 13^{2} + \left(6 a^{2} + 7 a + 10\right)\cdot 13^{3} + \left(7 a^{2} + a\right)\cdot 13^{4} + \left(6 a + 4\right)\cdot 13^{5} + \left(7 a^{2} + 2 a + 10\right)\cdot 13^{6} + \left(8 a^{2} + 10 a + 1\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 9 }$ $=$ $ 11 a^{2} + 11 a + 5 + \left(10 a^{2} + a + 6\right)\cdot 13 + \left(12 a^{2} + 9 a + 4\right)\cdot 13^{2} + \left(3 a^{2} + 10 a + 5\right)\cdot 13^{3} + \left(12 a^{2} + 7\right)\cdot 13^{4} + \left(7 a^{2} + 4 a + 2\right)\cdot 13^{5} + \left(3 a^{2} + 11 a\right)\cdot 13^{6} + \left(3 a + 9\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,7)(4,9)(5,6)$
$(2,5)(3,4)(7,8)$
$(1,3,6,8,9,2)(4,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,7)(4,9)(5,6)$ $0$ $0$
$1$ $3$ $(1,6,9)(2,3,8)(4,7,5)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,9,6)(2,8,3)(4,5,7)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,8,7)(2,5,6)(3,4,9)$ $-1$ $-1$
$2$ $3$ $(1,4,2)(3,6,7)(5,8,9)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,2,4)(3,7,6)(5,9,8)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$3$ $6$ $(1,3,6,8,9,2)(4,5,7)$ $0$ $0$
$3$ $6$ $(1,2,9,8,6,3)(4,7,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.