Basic invariants
Dimension: | $2$ |
Group: | $S_3\times C_3$ |
Conductor: | \(2888\)\(\medspace = 2^{3} \cdot 19^{2} \) |
Artin stem field: | Galois closure of 6.0.1267762688.3 |
Galois orbit size: | $2$ |
Smallest permutation container: | $S_3\times C_3$ |
Parity: | odd |
Determinant: | 1.152.6t1.d.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.152.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - 2x^{5} - 11x^{4} + 26x^{3} + 174x^{2} - 388x + 201 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{2} + 7x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 7 a + 6 + \left(3 a + 3\right)\cdot 11 + 5\cdot 11^{2} + \left(7 a + 7\right)\cdot 11^{3} + \left(3 a + 9\right)\cdot 11^{4} + 9 a\cdot 11^{5} + 3\cdot 11^{6} + \left(5 a + 2\right)\cdot 11^{7} + \left(a + 1\right)\cdot 11^{8} +O(11^{9})\) |
$r_{ 2 }$ | $=$ | \( 10 a + 10 + \left(6 a + 1\right)\cdot 11 + \left(8 a + 10\right)\cdot 11^{2} + \left(9 a + 9\right)\cdot 11^{3} + \left(9 a + 7\right)\cdot 11^{4} + \left(5 a + 4\right)\cdot 11^{5} + 6 a\cdot 11^{6} + 5 a\cdot 11^{7} + 6\cdot 11^{8} +O(11^{9})\) |
$r_{ 3 }$ | $=$ | \( 3 a + \left(3 a + 10\right)\cdot 11 + 8 a\cdot 11^{2} + \left(2 a + 7\right)\cdot 11^{3} + \left(6 a + 7\right)\cdot 11^{4} + \left(7 a + 2\right)\cdot 11^{5} + \left(5 a + 9\right)\cdot 11^{6} + 3\cdot 11^{7} + \left(10 a + 7\right)\cdot 11^{8} +O(11^{9})\) |
$r_{ 4 }$ | $=$ | \( 4 a + 1 + 7 a\cdot 11 + \left(10 a + 3\right)\cdot 11^{2} + \left(3 a + 2\right)\cdot 11^{3} + \left(7 a + 6\right)\cdot 11^{4} + \left(a + 1\right)\cdot 11^{5} + \left(10 a + 8\right)\cdot 11^{6} + \left(5 a + 10\right)\cdot 11^{7} + \left(9 a + 1\right)\cdot 11^{8} +O(11^{9})\) |
$r_{ 5 }$ | $=$ | \( 8 a + 1 + \left(7 a + 9\right)\cdot 11 + \left(2 a + 8\right)\cdot 11^{2} + \left(8 a + 9\right)\cdot 11^{3} + \left(4 a + 7\right)\cdot 11^{4} + \left(3 a + 4\right)\cdot 11^{5} + \left(5 a + 2\right)\cdot 11^{6} + 10 a\cdot 11^{7} + 3\cdot 11^{8} +O(11^{9})\) |
$r_{ 6 }$ | $=$ | \( a + 6 + \left(4 a + 8\right)\cdot 11 + \left(2 a + 4\right)\cdot 11^{2} + \left(a + 7\right)\cdot 11^{3} + \left(a + 4\right)\cdot 11^{4} + \left(5 a + 7\right)\cdot 11^{5} + \left(4 a + 9\right)\cdot 11^{6} + \left(5 a + 4\right)\cdot 11^{7} + \left(10 a + 2\right)\cdot 11^{8} +O(11^{9})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $2$ |
$3$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
$1$ | $3$ | $(1,3,6)(2,4,5)$ | $-2 \zeta_{3} - 2$ |
$1$ | $3$ | $(1,6,3)(2,5,4)$ | $2 \zeta_{3}$ |
$2$ | $3$ | $(1,6,3)$ | $\zeta_{3} + 1$ |
$2$ | $3$ | $(1,3,6)$ | $-\zeta_{3}$ |
$2$ | $3$ | $(1,3,6)(2,5,4)$ | $-1$ |
$3$ | $6$ | $(1,5,3,2,6,4)$ | $0$ |
$3$ | $6$ | $(1,4,6,2,3,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.