Properties

Label 2.2888.6t5.a.b
Dimension $2$
Group $S_3\times C_3$
Conductor $2888$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3\times C_3$
Conductor: \(2888\)\(\medspace = 2^{3} \cdot 19^{2} \)
Artin stem field: Galois closure of 6.0.1267762688.3
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Determinant: 1.152.6t1.d.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.152.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} - 11x^{4} + 26x^{3} + 174x^{2} - 388x + 201 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{2} + 7x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 7 a + 6 + \left(3 a + 3\right)\cdot 11 + 5\cdot 11^{2} + \left(7 a + 7\right)\cdot 11^{3} + \left(3 a + 9\right)\cdot 11^{4} + 9 a\cdot 11^{5} + 3\cdot 11^{6} + \left(5 a + 2\right)\cdot 11^{7} + \left(a + 1\right)\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 a + 10 + \left(6 a + 1\right)\cdot 11 + \left(8 a + 10\right)\cdot 11^{2} + \left(9 a + 9\right)\cdot 11^{3} + \left(9 a + 7\right)\cdot 11^{4} + \left(5 a + 4\right)\cdot 11^{5} + 6 a\cdot 11^{6} + 5 a\cdot 11^{7} + 6\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 a + \left(3 a + 10\right)\cdot 11 + 8 a\cdot 11^{2} + \left(2 a + 7\right)\cdot 11^{3} + \left(6 a + 7\right)\cdot 11^{4} + \left(7 a + 2\right)\cdot 11^{5} + \left(5 a + 9\right)\cdot 11^{6} + 3\cdot 11^{7} + \left(10 a + 7\right)\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a + 1 + 7 a\cdot 11 + \left(10 a + 3\right)\cdot 11^{2} + \left(3 a + 2\right)\cdot 11^{3} + \left(7 a + 6\right)\cdot 11^{4} + \left(a + 1\right)\cdot 11^{5} + \left(10 a + 8\right)\cdot 11^{6} + \left(5 a + 10\right)\cdot 11^{7} + \left(9 a + 1\right)\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 8 a + 1 + \left(7 a + 9\right)\cdot 11 + \left(2 a + 8\right)\cdot 11^{2} + \left(8 a + 9\right)\cdot 11^{3} + \left(4 a + 7\right)\cdot 11^{4} + \left(3 a + 4\right)\cdot 11^{5} + \left(5 a + 2\right)\cdot 11^{6} + 10 a\cdot 11^{7} + 3\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( a + 6 + \left(4 a + 8\right)\cdot 11 + \left(2 a + 4\right)\cdot 11^{2} + \left(a + 7\right)\cdot 11^{3} + \left(a + 4\right)\cdot 11^{4} + \left(5 a + 7\right)\cdot 11^{5} + \left(4 a + 9\right)\cdot 11^{6} + \left(5 a + 4\right)\cdot 11^{7} + \left(10 a + 2\right)\cdot 11^{8} +O(11^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,3,2,6,4)$
$(1,6,3)$
$(1,6,3)(2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$1$$3$$(1,3,6)(2,4,5)$$-2 \zeta_{3} - 2$
$1$$3$$(1,6,3)(2,5,4)$$2 \zeta_{3}$
$2$$3$$(1,6,3)$$\zeta_{3} + 1$
$2$$3$$(1,3,6)$$-\zeta_{3}$
$2$$3$$(1,3,6)(2,5,4)$$-1$
$3$$6$$(1,5,3,2,6,4)$$0$
$3$$6$$(1,4,6,2,3,5)$$0$

The blue line marks the conjugacy class containing complex conjugation.