Properties

Label 2.2e3_19e2.6t5.1
Dimension 2
Group $S_3\times C_3$
Conductor $ 2^{3} \cdot 19^{2}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$S_3\times C_3$
Conductor:$2888= 2^{3} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 11 x^{4} + 26 x^{3} + 174 x^{2} - 388 x + 201 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $S_3\times C_3$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 6 + \left(3 a + 3\right)\cdot 11 + 5\cdot 11^{2} + \left(7 a + 7\right)\cdot 11^{3} + \left(3 a + 9\right)\cdot 11^{4} + 9 a\cdot 11^{5} + 3\cdot 11^{6} + \left(5 a + 2\right)\cdot 11^{7} + \left(a + 1\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 10 + \left(6 a + 1\right)\cdot 11 + \left(8 a + 10\right)\cdot 11^{2} + \left(9 a + 9\right)\cdot 11^{3} + \left(9 a + 7\right)\cdot 11^{4} + \left(5 a + 4\right)\cdot 11^{5} + 6 a\cdot 11^{6} + 5 a\cdot 11^{7} + 6\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 3 a + \left(3 a + 10\right)\cdot 11 + 8 a\cdot 11^{2} + \left(2 a + 7\right)\cdot 11^{3} + \left(6 a + 7\right)\cdot 11^{4} + \left(7 a + 2\right)\cdot 11^{5} + \left(5 a + 9\right)\cdot 11^{6} + 3\cdot 11^{7} + \left(10 a + 7\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 1 + 7 a\cdot 11 + \left(10 a + 3\right)\cdot 11^{2} + \left(3 a + 2\right)\cdot 11^{3} + \left(7 a + 6\right)\cdot 11^{4} + \left(a + 1\right)\cdot 11^{5} + \left(10 a + 8\right)\cdot 11^{6} + \left(5 a + 10\right)\cdot 11^{7} + \left(9 a + 1\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 1 + \left(7 a + 9\right)\cdot 11 + \left(2 a + 8\right)\cdot 11^{2} + \left(8 a + 9\right)\cdot 11^{3} + \left(4 a + 7\right)\cdot 11^{4} + \left(3 a + 4\right)\cdot 11^{5} + \left(5 a + 2\right)\cdot 11^{6} + 10 a\cdot 11^{7} + 3\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 6 }$ $=$ $ a + 6 + \left(4 a + 8\right)\cdot 11 + \left(2 a + 4\right)\cdot 11^{2} + \left(a + 7\right)\cdot 11^{3} + \left(a + 4\right)\cdot 11^{4} + \left(5 a + 7\right)\cdot 11^{5} + \left(4 a + 9\right)\cdot 11^{6} + \left(5 a + 4\right)\cdot 11^{7} + \left(10 a + 2\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,3,2,6,4)$
$(1,6,3)$
$(1,6,3)(2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$ $0$
$1$ $3$ $(1,3,6)(2,4,5)$ $2 \zeta_{3}$ $-2 \zeta_{3} - 2$
$1$ $3$ $(1,6,3)(2,5,4)$ $-2 \zeta_{3} - 2$ $2 \zeta_{3}$
$2$ $3$ $(1,6,3)$ $-\zeta_{3}$ $\zeta_{3} + 1$
$2$ $3$ $(1,3,6)$ $\zeta_{3} + 1$ $-\zeta_{3}$
$2$ $3$ $(1,3,6)(2,5,4)$ $-1$ $-1$
$3$ $6$ $(1,5,3,2,6,4)$ $0$ $0$
$3$ $6$ $(1,4,6,2,3,5)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.