Properties

Label 2.2e3_19e2.6t3.2c1
Dimension 2
Group $D_{6}$
Conductor $ 2^{3} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:$2888= 2^{3} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 38 x^{3} - 38 x^{2} - 76 x + 323 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{6}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 2\cdot 13 + 6\cdot 13^{2} + 3\cdot 13^{3} + 10\cdot 13^{4} + 12\cdot 13^{5} + 4\cdot 13^{6} + 12\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 10 a + 11 + \left(8 a + 5\right)\cdot 13 + \left(2 a + 5\right)\cdot 13^{2} + \left(12 a + 7\right)\cdot 13^{3} + \left(12 a + 5\right)\cdot 13^{4} + \left(8 a + 1\right)\cdot 13^{5} + \left(9 a + 5\right)\cdot 13^{6} + \left(11 a + 1\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 9 + \left(12 a + 8\right)\cdot 13 + \left(a + 8\right)\cdot 13^{2} + \left(4 a + 3\right)\cdot 13^{3} + \left(5 a + 7\right)\cdot 13^{4} + \left(9 a + 4\right)\cdot 13^{5} + \left(10 a + 3\right)\cdot 13^{6} + \left(a + 11\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 8 + \left(4 a + 4\right)\cdot 13 + \left(10 a + 12\right)\cdot 13^{2} + 3\cdot 13^{3} + 6\cdot 13^{4} + \left(4 a + 10\right)\cdot 13^{5} + \left(3 a + 5\right)\cdot 13^{6} + \left(a + 3\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 2 + 2\cdot 13 + \left(11 a + 11\right)\cdot 13^{2} + \left(8 a + 5\right)\cdot 13^{3} + \left(7 a + 8\right)\cdot 13^{4} + \left(3 a + 8\right)\cdot 13^{5} + \left(2 a + 4\right)\cdot 13^{6} + \left(11 a + 2\right)\cdot 13^{7} +O\left(13^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 7 + 2\cdot 13 + 8\cdot 13^{2} + 13^{3} + 13^{4} + 13^{5} + 2\cdot 13^{6} + 8\cdot 13^{7} +O\left(13^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)(4,5)$
$(2,4)(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,6)(2,3)(4,5)$$-2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,5)(4,6)$$0$
$2$$3$$(1,3,5)(2,4,6)$$-1$
$2$$6$$(1,4,3,6,5,2)$$1$
The blue line marks the conjugacy class containing complex conjugation.