Properties

Label 2.2e3_17e2.8t7.2c2
Dimension 2
Group $C_8:C_2$
Conductor $ 2^{3} \cdot 17^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$C_8:C_2$
Conductor:$2312= 2^{3} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 6 x^{6} - 3 x^{5} + 19 x^{4} - 14 x^{3} + 6 x^{2} + 36 x + 52 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_8:C_2$
Parity: Even
Determinant: 1.2e3_17.4t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 239 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 19 + 103\cdot 239 + 135\cdot 239^{2} + 94\cdot 239^{3} + 168\cdot 239^{4} + 214\cdot 239^{5} +O\left(239^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 25 + 22\cdot 239 + 177\cdot 239^{2} + 211\cdot 239^{3} + 20\cdot 239^{4} + 206\cdot 239^{5} +O\left(239^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 87 + 41\cdot 239 + 15\cdot 239^{2} + 178\cdot 239^{3} + 223\cdot 239^{4} + 176\cdot 239^{5} +O\left(239^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 93 + 199\cdot 239 + 56\cdot 239^{2} + 56\cdot 239^{3} + 76\cdot 239^{4} + 168\cdot 239^{5} +O\left(239^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 149 + 57\cdot 239 + 11\cdot 239^{2} + 112\cdot 239^{3} + 46\cdot 239^{4} + 118\cdot 239^{5} +O\left(239^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 176 + 40\cdot 239 + 239^{2} + 208\cdot 239^{3} + 26\cdot 239^{4} + 51\cdot 239^{5} +O\left(239^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 191 + 134\cdot 239 + 45\cdot 239^{2} + 119\cdot 239^{3} + 206\cdot 239^{4} + 43\cdot 239^{5} +O\left(239^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 218 + 117\cdot 239 + 35\cdot 239^{2} + 215\cdot 239^{3} + 186\cdot 239^{4} + 215\cdot 239^{5} +O\left(239^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,2)(5,6,8,7)$
$(1,6,2,8,4,7,3,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,8)(6,7)$$-2$
$2$$2$$(5,8)(6,7)$$0$
$1$$4$$(1,2,4,3)(5,6,8,7)$$-2 \zeta_{4}$
$1$$4$$(1,3,4,2)(5,7,8,6)$$2 \zeta_{4}$
$2$$4$$(1,3,4,2)(5,6,8,7)$$0$
$2$$8$$(1,6,2,8,4,7,3,5)$$0$
$2$$8$$(1,8,3,6,4,5,2,7)$$0$
$2$$8$$(1,8,2,7,4,5,3,6)$$0$
$2$$8$$(1,7,3,8,4,6,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.