Properties

Label 2.2e3_17e2.4t3.6c1
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$2312= 2^{3} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 26 x^{6} - 64 x^{5} + 211 x^{4} - 320 x^{3} + 582 x^{2} - 432 x + 608 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 18 + 58\cdot 137 + 98\cdot 137^{2} + 9\cdot 137^{3} + 13\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 13\cdot 137 + 118\cdot 137^{2} + 51\cdot 137^{3} + 72\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 59\cdot 137 + 112\cdot 137^{2} + 53\cdot 137^{3} + 49\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 6\cdot 137 + 82\cdot 137^{2} + 21\cdot 137^{3} + 2\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 89 + 130\cdot 137 + 54\cdot 137^{2} + 115\cdot 137^{3} + 134\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 100 + 77\cdot 137 + 24\cdot 137^{2} + 83\cdot 137^{3} + 87\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 104 + 123\cdot 137 + 18\cdot 137^{2} + 85\cdot 137^{3} + 64\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 120 + 78\cdot 137 + 38\cdot 137^{2} + 127\cdot 137^{3} + 123\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,2,6)(3,8,4,7)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,4)(5,7)(6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,2)(3,4)(5,6)(7,8)$$-2$
$2$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$2$$2$$(1,8)(2,7)(3,5)(4,6)$$0$
$2$$4$$(1,5,2,6)(3,8,4,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.