Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 41 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 8 + 35\cdot 41^{2} + 4\cdot 41^{3} + 22\cdot 41^{4} + 27\cdot 41^{5} + 37\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 + 37\cdot 41 + 13\cdot 41^{2} + 33\cdot 41^{3} + 3\cdot 41^{4} + 32\cdot 41^{5} + 28\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 15 + 38\cdot 41 + 10\cdot 41^{2} + 6\cdot 41^{3} + 40\cdot 41^{4} + 5\cdot 41^{5} + 2\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 18 + 34\cdot 41 + 30\cdot 41^{2} + 34\cdot 41^{3} + 21\cdot 41^{4} + 10\cdot 41^{5} + 34\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 23 + 6\cdot 41 + 10\cdot 41^{2} + 6\cdot 41^{3} + 19\cdot 41^{4} + 30\cdot 41^{5} + 6\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 26 + 2\cdot 41 + 30\cdot 41^{2} + 34\cdot 41^{3} + 35\cdot 41^{5} + 38\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 30 + 3\cdot 41 + 27\cdot 41^{2} + 7\cdot 41^{3} + 37\cdot 41^{4} + 8\cdot 41^{5} + 12\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 33 + 40\cdot 41 + 5\cdot 41^{2} + 36\cdot 41^{3} + 18\cdot 41^{4} + 13\cdot 41^{5} + 3\cdot 41^{6} +O\left(41^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,3)(2,7)(4,5)(6,8)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$2$ |
| $1$ |
$2$ |
$(1,6)(2,5)(3,8)(4,7)$ |
$-2$ |
| $2$ |
$2$ |
$(1,2)(3,4)(5,6)(7,8)$ |
$0$ |
| $2$ |
$2$ |
$(1,3)(2,7)(4,5)(6,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,6,4)(2,3,5,8)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.