Properties

Label 2.2e3_163.24t22.2c1
Dimension 2
Group $\textrm{GL(2,3)}$
Conductor $ 2^{3} \cdot 163 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$\textrm{GL(2,3)}$
Conductor:$1304= 2^{3} \cdot 163 $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 4 x^{6} + 4 x^{5} + 16 x^{4} + 32 x^{3} + 28 x^{2} + 8 x - 4 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T22
Parity: Odd
Determinant: 1.163.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 9 + \left(4 a + 4\right)\cdot 11 + \left(4 a + 9\right)\cdot 11^{2} + 7 a\cdot 11^{3} + \left(a + 8\right)\cdot 11^{4} + \left(2 a + 1\right)\cdot 11^{5} + \left(2 a + 5\right)\cdot 11^{6} + \left(a + 9\right)\cdot 11^{7} + \left(7 a + 8\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 3 + \left(6 a + 7\right)\cdot 11 + 6 a\cdot 11^{2} + \left(3 a + 4\right)\cdot 11^{3} + \left(9 a + 7\right)\cdot 11^{4} + \left(8 a + 8\right)\cdot 11^{5} + 8 a\cdot 11^{6} + \left(9 a + 1\right)\cdot 11^{7} + \left(3 a + 3\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 6 + \left(10 a + 3\right)\cdot 11 + \left(4 a + 9\right)\cdot 11^{2} + \left(7 a + 9\right)\cdot 11^{3} + \left(3 a + 7\right)\cdot 11^{4} + \left(3 a + 4\right)\cdot 11^{5} + 7 a\cdot 11^{6} + \left(4 a + 4\right)\cdot 11^{7} + \left(a + 7\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 5 + 7\cdot 11 + 8\cdot 11^{2} + 11^{3} + 2\cdot 11^{4} + 5\cdot 11^{5} + 9\cdot 11^{6} + 11^{7} + 6\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 5 }$ $=$ $ a + 2 + 4\cdot 11 + \left(6 a + 7\right)\cdot 11^{2} + \left(3 a + 1\right)\cdot 11^{3} + \left(7 a + 4\right)\cdot 11^{4} + \left(7 a + 3\right)\cdot 11^{5} + \left(3 a + 4\right)\cdot 11^{6} + \left(6 a + 4\right)\cdot 11^{7} + \left(9 a + 8\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 9 + 7\cdot 11 + 6\cdot 11^{2} + 6\cdot 11^{3} + 4\cdot 11^{4} + 3\cdot 11^{5} + 4\cdot 11^{6} + 3\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 3 a + \left(6 a + 10\right)\cdot 11 + \left(10 a + 4\right)\cdot 11^{2} + \left(6 a + 6\right)\cdot 11^{3} + \left(8 a + 7\right)\cdot 11^{4} + \left(7 a + 2\right)\cdot 11^{5} + 6 a\cdot 11^{6} + \left(5 a + 9\right)\cdot 11^{7} + \left(2 a + 6\right)\cdot 11^{8} +O\left(11^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 8 a + 1 + \left(4 a + 10\right)\cdot 11 + 7\cdot 11^{2} + \left(4 a + 1\right)\cdot 11^{3} + \left(2 a + 2\right)\cdot 11^{4} + \left(3 a + 3\right)\cdot 11^{5} + \left(4 a + 8\right)\cdot 11^{6} + \left(5 a + 2\right)\cdot 11^{7} + 8 a\cdot 11^{8} +O\left(11^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,4)(5,6)(7,8)$
$(1,6,3,4)(2,7,5,8)$
$(1,5,3,2)(4,8,6,7)$
$(2,6,8)(4,7,5)$
$(1,3)(2,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,6)(7,8)$$-2$
$12$$2$$(2,4)(5,6)(7,8)$$0$
$8$$3$$(1,6,7)(3,4,8)$$-1$
$6$$4$$(1,6,3,4)(2,7,5,8)$$0$
$8$$6$$(1,8,6,3,7,4)(2,5)$$1$
$6$$8$$(1,6,8,5,3,4,7,2)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,4,8,2,3,6,7,5)$$\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.