Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 26 a + 10 + \left(59 a + 40\right)\cdot 67 + 15\cdot 67^{2} + \left(16 a + 24\right)\cdot 67^{3} + \left(14 a + 12\right)\cdot 67^{4} + 17\cdot 67^{5} +O\left(67^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 + 18\cdot 67 + 50\cdot 67^{2} + 58\cdot 67^{3} + 28\cdot 67^{4} + 38\cdot 67^{5} +O\left(67^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 41 a + 47 + \left(7 a + 50\right)\cdot 67 + \left(66 a + 26\right)\cdot 67^{2} + \left(50 a + 20\right)\cdot 67^{3} + \left(52 a + 53\right)\cdot 67^{4} + \left(66 a + 3\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 44 a + 19 + \left(60 a + 47\right)\cdot 67 + \left(41 a + 2\right)\cdot 67^{2} + \left(20 a + 66\right)\cdot 67^{3} + 46\cdot 67^{4} + \left(20 a + 9\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 23 a + 61 + \left(6 a + 44\right)\cdot 67 + \left(25 a + 42\right)\cdot 67^{2} + \left(46 a + 39\right)\cdot 67^{3} + \left(66 a + 27\right)\cdot 67^{4} + \left(46 a + 22\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 7 a + 5 + \left(33 a + 36\right)\cdot 67 + \left(18 a + 43\right)\cdot 67^{2} + \left(11 a + 2\right)\cdot 67^{3} + \left(33 a + 59\right)\cdot 67^{4} + \left(61 a + 47\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 60 a + 33 + \left(33 a + 27\right)\cdot 67 + \left(48 a + 17\right)\cdot 67^{2} + \left(55 a + 29\right)\cdot 67^{3} + \left(33 a + 46\right)\cdot 67^{4} + \left(5 a + 59\right)\cdot 67^{5} +O\left(67^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 21 + 3\cdot 67 + 2\cdot 67^{2} + 27\cdot 67^{3} + 60\cdot 67^{4} + 67^{5} +O\left(67^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,6,7)(4,5,8)$ |
| $(1,3)(2,8)(4,6)(5,7)$ |
| $(2,5)(4,6)(7,8)$ |
| $(1,6,3,4)(2,7,8,5)$ |
| $(1,8,3,2)(4,5,6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
$c2$ |
| $1$ |
$1$ |
$()$ |
$2$ |
$2$ |
| $1$ |
$2$ |
$(1,3)(2,8)(4,6)(5,7)$ |
$-2$ |
$-2$ |
| $12$ |
$2$ |
$(2,5)(4,6)(7,8)$ |
$0$ |
$0$ |
| $8$ |
$3$ |
$(1,7,4)(3,5,6)$ |
$-1$ |
$-1$ |
| $6$ |
$4$ |
$(1,6,3,4)(2,7,8,5)$ |
$0$ |
$0$ |
| $8$ |
$6$ |
$(1,8,5,3,2,7)(4,6)$ |
$1$ |
$1$ |
| $6$ |
$8$ |
$(1,8,4,7,3,2,6,5)$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
| $6$ |
$8$ |
$(1,2,4,5,3,8,6,7)$ |
$\zeta_{8}^{3} + \zeta_{8}$ |
$-\zeta_{8}^{3} - \zeta_{8}$ |
The blue line marks the conjugacy class containing complex conjugation.