Properties

Label 2.2e3_1609.4t3.5
Dimension 2
Group $D_4$
Conductor $ 2^{3} \cdot 1609 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_4$
Conductor:$12872= 2^{3} \cdot 1609 $
Artin number field: Splitting field of $f= x^{8} - 54 x^{6} + 537 x^{4} + 18056 x^{2} + 9216 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 2 + 23\cdot 67 + 24\cdot 67^{2} + 22\cdot 67^{3} + 29\cdot 67^{4} + 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 16 + 46\cdot 67 + 20\cdot 67^{2} + 60\cdot 67^{3} + 26\cdot 67^{4} + 57\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 24 + 14\cdot 67 + 48\cdot 67^{2} + 44\cdot 67^{3} + 5\cdot 67^{4} + 51\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 25 + 50\cdot 67 + 40\cdot 67^{2} + 6\cdot 67^{3} + 5\cdot 67^{4} + 24\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 42 + 16\cdot 67 + 26\cdot 67^{2} + 60\cdot 67^{3} + 61\cdot 67^{4} + 42\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 43 + 52\cdot 67 + 18\cdot 67^{2} + 22\cdot 67^{3} + 61\cdot 67^{4} + 15\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 51 + 20\cdot 67 + 46\cdot 67^{2} + 6\cdot 67^{3} + 40\cdot 67^{4} + 9\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 65 + 43\cdot 67 + 42\cdot 67^{2} + 44\cdot 67^{3} + 37\cdot 67^{4} + 65\cdot 67^{5} +O\left(67^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,4,3)(5,6,8,7)$
$(1,5)(2,7)(3,6)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)(5,8)(6,7)$ $-2$
$2$ $2$ $(1,5)(2,7)(3,6)(4,8)$ $0$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$2$ $4$ $(1,2,4,3)(5,6,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.