Properties

Label 2.2e3_1609.4t3.4c1
Dimension 2
Group $D_{4}$
Conductor $ 2^{3} \cdot 1609 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:$12872= 2^{3} \cdot 1609 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - 13 x^{2} - 4 x + 114 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $D_{4}$
Parity: Odd
Determinant: 1.2e3_1609.2t1.2c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 17\cdot 67 + 27\cdot 67^{2} + 66\cdot 67^{3} + 13\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 + 63\cdot 67 + 47\cdot 67^{2} + 59\cdot 67^{3} + 40\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 33 + 19\cdot 67 + 5\cdot 67^{2} + 15\cdot 67^{3} + 3\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 57 + 33\cdot 67 + 53\cdot 67^{2} + 59\cdot 67^{3} + 8\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.